

School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea ¹chj0505@gist.ac.kr; ²shan@gist.ac.kr

- The field observation showed that the highest fractions of DGM were found at the highest marine DOM sites, suggesting increased reducible Hg(II) by marine DOM (Schartup et al., 2015).
- The lowest DGM fraction (7.8±2.4%) was observed in the near-coastal sites influenced by riverine inputs than the offshore sites. Significantly higher %DGM, observed in the ocean sites (15.8±3.9%), suggests that DOM may decrease reducible Hg(II) fraction or affect redox kinetics (Soerensen et al., 2013).
- The DOM composition is a critical driver of Hg redox reactivity and bioavailability in coastal waters, however, it's role has not been clearly identified.

Experimental Methods

1. Field Observations

2. Redox Incubations (June 2017, 6 am – 5 pm)

Aug 2016 (8 sites)

Redox transformation of mercury in coastal seawater: Gwangyang Bay, Korea

Hyojung Choi¹ and Seunghee Han²

Results and Discussion

robial humic, terrestrial and marine humic,
Terrestrial humic, large molecular size,
hydrophobic, widespread
Humic-like
Humic-like
Soil fulvic-like
Marine-like
Algal derived
Protein-like
Quinoid-like humic, in situ CDOM

Acknowledgements

This research was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2015R1A2A2A01003774).)

Algal-derived protein-like DOM may promote the reduction rate of Hg(II) in seawater. Currently, photo-bleaching experiments to identify redox sensitive DOM components are under progress.